Chemical Reaction Engineering

Lecture 1

Chemical Reaction Engineering

- Course plan (Total 15 Lectures)
 - Mole balance and design equations for batch and continuous mode reactors.
 - Rate laws in the reactor design
 - Isothermal reactor design
 - Bioreactors (Eva)
 - Comsol modelling of reactions and reactors. H-cell with chemical reaction.
 - Non-isothermal reactors. Comsol modelling: flow through porous bed and stirred batch reactor.
 - Diffusion and Reactions. Comsol modelling of biochips: reaction on the surface
 - Molecular Electronics block (5 Lectures).

The Scope

- The Aim of the Course:
 - To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor)

General algorithm of Chemical Reaction Engineering

- Rate laws
- Stoichiometry
- Energy balance

Combine and Solve

Rates of chemical reactions

$$A+2B\longrightarrow 3C+D$$

Instantaneous rate of **consumption** of a reactant:

$$-d[R]/dt$$

Instantaneous rate of **formation** of a product:

From stoichiometry

$$\frac{d[D]}{dt} = \frac{1}{3} \frac{d[C]}{dt} = -\frac{d[A]}{dt} = -\frac{1}{2} \frac{d[B]}{dt}$$

Rate of the reaction: $v = \frac{1}{v_i} \frac{dn_i}{dt} = \frac{d\xi}{dt}$

! In the case of heterogeneous reaction the rate will be defined per unit area of catalyst as mol/m²s ! In the case of continuous flow reactor change of concentration is not equal to the reaction rate

Rates of chemical reactions

$$A+2B\longrightarrow 3C+D$$

- Usually we interested in the concentration of one particular reagent, say A.
- The reaction rate in terms of reagent A is the number of moles of A reacting per unit time, per unit volume (mol·m⁻³·s⁻¹)
 In the case of heterogeneous reaction the rate will be defined per unit area of catalyst as mol/m²·s or per unit mass of catalyst mol/kg·s

$$-r_A = d[A]/dt$$
 Ok for closed well stirred system but,

this definition is inconvenient and can be misleading because

- the concentration of A is varying with time and position inside the reactor,
- for a continuous reactor in steady state, the concentration at a given point is constant in time

Rates of chemical reactions

- So, we should rather say that:
- Rate of chemical reaction is an algebraic function involving concentration, temperature, pressure and type of catalyst at a point in the system

$$A \rightarrow product$$

e.g. 1st order reaction

$$-r_A = kC_A$$

2nd order reaction

$$-r_A = kC_A^2$$

The general mole balance equation

For any component j:

Mass balance:

Rate of flow IN - Rate of flow OUT + Rate of Generation =Rate of Accumulation

The general mole balance equation

 Generally, the rate of reaction varies from point to point in the reactor:

$$G_i = \int_{0}^{V} r_i dV$$

• The general mole balance equation:

$$F_{j0} - F_j + \int_j^V r_i dV = \frac{dN_j}{dt}$$

 From here, design equation for different types of the reactors can be developed

Types of Chemical Reactors

Depending on loading/unloading of the reactor

Continuos Semi-Batch Batch Flow CSTR (Continuous-Stirred Tank Reactor) **Tubular reactor** Packed-bed reactor

Batch reactors

- for small-scale operation;
- testing new processes
- manufacturing expensive products
- processes difficult to convert to continuous operation

Batch reactors

$$F_{j0} - F_j + \int_j^V r_i dV = \frac{dN_j}{dt} \qquad \qquad \int_j^V r_i dV = \frac{dN_j}{dt}$$

assuming perfect mixing, reaction rate the same through the volume

$$\frac{dN_{j}}{dt} = r_{j}V$$

integrating the equation we can get N_i vs t-"mole-time trajectory"

$$t_1 = \int_{N_{A1}}^{N_{A0}} \frac{dN_A}{-r_A V}$$

time to reach $t_1 = \int_{N_{A1}}^{N_{A0}} \frac{dN_A}{-r_A V}$ time to reach concentration N_{A1} in the reactor can be found

Batch reactors

Pfaudler's Batch reactor

CSTR (Continuous-Stirred Tank Reactor)

Pfaudler's CSTR reactor

CSTR (Continuous-Stirred Tank Reactor)

- assuming perfect mixing, so
 - Reaction rate is the same through the volume
 - Conditions of exit stream are the same as in the reactor

$$F_{j0} - F_j = -r_j V$$

$$\qquad \qquad V = \frac{F_{j0} - F_j}{-r_j} \quad \text{or} \quad V = \frac{v_0 C_{A0} - v C_A}{-r_A}$$

Design equation of CSTR

Tubular reactor

- usually operates in steady state
- primarly used for gas reactions
- easy to maintain, no moving parts
- produce highest yield
- temperature could be difficult to control, hot spots might occur

Tubular reactor

- Reaction continuously progresses along the length of the reactor, so the concentration and consequently the reaction rate varies in axial direction
- in the model of Plug Flow Reactor (PFR) the velocity is considered uniform and there are no variation of concentration (and reaction rate) in the radial direction
- If it cannot be neglected we have a model of Laminar Flow Reactor.

PFR (plug flow reactor) – useful approximation of a tubular reactor

Plug flow-no radial variations in velocity, concentration, temperature, or reaction rate

For every slice of volume:

$$F_{j0} - F_j + r_i \Delta V = 0$$
 \Rightarrow $r_i = \frac{F_{j|V + \Delta V} - F_{j|V}}{\Delta V}$ \Rightarrow $r_i = \frac{dF_j}{dV}$

 From here, a volume required to produce given molar flow rate of product can be determined

Design equation for PFR

$$r_{j} = \frac{dF_{j}}{dV} \qquad \Longrightarrow \qquad dV = \frac{dF_{j}}{r_{j}} \qquad V = \int_{F_{j0}}^{F_{j}} \frac{dF_{j}}{r_{j}} = \int_{F_{j}}^{F_{j0}} \frac{dF_{j}}{-r_{j}}$$

 If we know a profile of molar flow rate vs. Volume we can calculate the required volume to produce given molar flow rate at the outlet.

 Packed-Bed reactor – here the reaction takes place on the surface of catalyst

 reaction rate defined per unit area (or mass) of catalyst

 $-r'_A =$ (mol A reacted)/s·(g catalyst)

W – catalyst weight coordinate

 as in the PFR case, we can calculate design equation now in terms of catalyst weight coordinate

$$F_{A|W} - F_{A|W + \Delta W} + r_A' \Delta W = 0 \implies r_A' = \frac{F_{A|W + \Delta W} - F_{A|W}}{\Delta W} \implies r_A' = \frac{dF_A}{dW}$$

Reactors Mole Balance: Summary

	Reactor	Comment	Mole Balance Differential Form	Algebraic Form	Integral Form	
	Batch	No spatial variations	$\frac{dN_A}{dt} = r_A V$		$t_1 = \int_{N_{\rm A1}}^{N_{\rm A0}} \frac{dN_{\rm A}}{-r_{\rm A}V}$	
	CSTR	No spatial variations, steady state	-	$V = \frac{F_{A0} - F_{A}}{-r_{A}}$	_	
₹	PFR	Steady state	$\frac{dF_{A}}{dV} = r_{A}$		$V_{\rm I} = \int_{F_{\rm AI}}^{F_{\rm A0}} \frac{dF_{\rm A}}{-r_{\rm A}}$	
1	PBR	Steady state	$\frac{dF_{A}}{dW} = r'_{A}$		$W_1 = \int_{F_{A1}}^{F_{A0}} \frac{dF_A}{-r'_A}$	

How we can use design equations: Example 1-1

Problem

An isomerization reaction A->B (first order reaction, k=0.23 min⁻¹) is run in a tubular reactor with a constant volumetric flow rate v_0 = 10 l/min. Derive design equation, sketch concentration profile and determine the reactor volume required to achive 10% of A at the exit.

Solution

From the mole balance for PFR: $\frac{dF_A}{dV} = r_A$

$$\frac{dF_A}{dV} = r_A$$

Reaction rate law: $-r_{A} = kC_{A}$

As the volumetric flow is kept constant:

$$\frac{dF_A}{dV} = v_0 \frac{dC_A}{dV}$$

Combining with the rate law: $v_0 \frac{dC_A}{dV} = -kC_A$ \bigvee $V = -\frac{v_0}{k} \int_{C}^{C_{A1}} \frac{dC_A}{C_A} = 100 dm^3$

Sizing of reactors

Here we'll find how to find the size of a reactor if the relation between the reaction rate and conversion factor is known

Conversion in the reactors

$$aA + bB \longrightarrow cC + dD$$

 if we are interested in species A we can define the reactant A as the basis of calculation

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

• **conversion**: $X_A = \frac{\text{Moles of A reacted}}{\text{Moles of A fed}}$

 maximum conversion for reversible reactions is the equilibrium conversion X_e.

Batch reactor design equations

[Moles of A reacted] =
$$[N_{A0}] \cdot X_A$$

[Moles of A in reactor,
$$N_A$$
] = $[N_{A0}] - [N_{A0}] \cdot X_A$

$$N_{A0} \frac{dX}{dt} = (-r_A)V$$

Design equation for Batch Reactor

- the equation can be integrated to find the time necessary to achieve required conversion
- the longer reactants spend in the chamber the higher is the degree of conversion

$$[F_{A0}][X] = \frac{[\text{Moles of A fed}]}{[\text{time}]} \frac{[\text{Moles of A reacted}]}{[\text{Moles of A fed}]}$$

$$[F_{A0}][X] = \frac{[\text{Moles of A reacted}]}{[\text{time}]}$$

Molar flow rate fed to the system of A in the system

Molar flow rate of the consumption

$$[F_{A0}] - [F_{A0}] \cdot X = [F_A]$$

Molar flow rate of A leaving the system

molar flow rate can be expressed as concentration * volume rate

$$[F_A] = [F_{A0}](1-X) = C_{A0}v_0(1-X)$$

CSTR:

$$[F_A] = [F_{A0}](1-X)$$

$$V = \frac{F_{A0} - F_A}{-r_A} = \frac{F_{A0} \cdot X}{\left(-r_A\right)_{exit}}$$

 Because the reactor is perfectly mixed, the exit composition is identical to the composition inside the reactor

Tubular Flow Reactor (PFR):

$$-r_{A} = \frac{-dF_{A}}{dV}$$

$$[F_{A}] = [F_{A0}](1-X)$$

$$-r_{A} = \frac{F_{A0}dX}{dV}$$

$$V = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$$

 to integrate we need to know r_A depends on the concentration (and therefore on conversion)

Packed-Bed Reactor: similar derivation, but W instead of V

$$-r'_{A} = \frac{-dF_{A}}{dW}$$

$$[F_{A}] = [F_{A0}](1-X)$$

$$-r'_{A} = \frac{F_{A0}dX}{dW}$$

$$W = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}'}$$

 from this equation we can find weight of catalyst W required to achieve the conversion X

Accounting for the reaction rate law

 As we see, to find the volume of the reactor we need to know the 1/r_A dependence on X

Let's consider a first-order reaction:

$$-r_A = kC_A = kC_{A0}(1-X)$$

$$\frac{1}{-r_A} = \frac{1}{kC_{A0}} \frac{1}{(1-X)}$$

Levenspiel plot

 reactor volume required is always reciprocal in r_A and proportional to X.

PFR:
$$V = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$$
 CSTR: $V = \frac{F_{A0} \cdot X}{-r_{A}}$

Levenspiel plot:

Example (2.2, p.48)

 Reaction A→B described by the data below and the species A enter the reactor at a molar flow rate of 0.4 mol/s:

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{A}\left(\frac{\text{mol}}{\text{m}^{3}\cdot\text{s}}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05
$(1/-r_{\rm A})\left(\frac{{\rm m}^3\cdot{\rm s}}{{\rm mol}}\right)$	2.22	2.70	3.33	5.13	8.85	12.7	20
$[F_{A0}/-r_A](m^3)$	0.89	1.08	1.33	2.05	3.54	5.06	8.0

Calculate the volume necessary for 80% conversion

Example (2.2, p.48)

Solution:

Based on the table the Levenspiel plot can be constructed

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{A}\left(\frac{\text{mol}}{\text{m}^{3}\cdot\text{s}}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05
$(1/-r_{\rm A})\left(\frac{{\rm m}^3\cdot {\rm s}}{{\rm mol}}\right)$	2.22	2.70	3.33	5.13	8.85	12.7	20
$[F_{A0}/-r_A](m^3)$	0.89	1.08	1.33	2.05	3.54	5.06	8.0

– The design equation for the CSTR:

$$V = \frac{F_{A0}}{\left(-r_{A1}\right)_{exit}}X$$

$$V = \frac{F_{A0}}{(-r_{A1})_{cont}} X \qquad V = 0.4 \frac{mol}{s} 20 \frac{m^3 \cdot s}{mol} 0.8 = 6.4 m^3$$

Example (2.3, p.50)

- Calculate based on the same data the volume of PFR:
 - Again, we construct the Levenspiel plot

1.08

1.33

2.05

3.54

5.06

8.0

The design equation for the PFR:

$$V = \int_0^{0.8} \frac{F_{A0}}{-r_{A1}} dX = 2.165 m^3$$

Reactors in series

CSTR in series

Figure 2-4 Two CSTRs in series.

$$F_{A0} - F_{A1} + r_{A1}V_1 = 0$$
$$F_{A1} = F_{A0} - F_{A0}X_1$$

- 2nd reactor

$$F_{A1} - F_{A2} + r_{A2}V_2 = 0$$
$$F_{A2} = F_{A0} - F_{A0}X_2$$

$$V_1 = F_{A0} \frac{1}{-r_{A1}} X_1$$

$$V_2 = F_{A0} \frac{1}{-r_{A2}} (X_1 - X_2)$$

Mean residence time (Space Time)

space time is defined as:

$$\tau = \frac{V}{v_0}$$

$$X = \frac{F_{A0} - F_{A}}{F_{A0}} = \frac{C_{A0} v_{0} - C_{A} v}{C_{A0} v_{0}} = \frac{C_{A0} - C_{A}}{C_{A0}}$$
when $X = 0$, $C_{A} = C_{A0}$
when $X = X$, $C_{A} = C_{A}$

$$dX = \frac{-dC_{A}}{C_{A0}}$$

$$V = v_{0} \int_{C_{A}}^{C_{A0}} \frac{dC_{A}}{-r_{A}}$$

$$\tau = \int_{C_{\rm A}}^{C_{\rm A0}} \frac{dC_{\rm A}}{-r_{\rm A}}$$

equal to the mean rresidence time in the absence of dispersion

Reactor design equations: Summary

	Differential Form	Algebraic Form	Integral Form
Batch	$N_{A0}\frac{dX}{dt} = -r_{A}V$		$t = N_{A0} \int_0^X \frac{dX}{-r_A V}$
CSTR		$V = \frac{F_{A0}(X_{\text{out}} - X_{\text{in}})}{(-r_{\text{A}})_{\text{out}}}$	
PFR	$F_{A0}\frac{dX}{dV} = -r_{A}$		$V = F_{A0} \int_{X_{tn}}^{X_{out}} \frac{dX}{-r_{A}}$
PBR	$F_{A0}\frac{dX}{dW} = -r'_{A}$		$W = F_{A0} \int_{X_{in}}^{X_{out}} \frac{dX}{-r'}$

Problems

- Class problem:
 - P1-6b (p.30): Calculate the volume of CSTR for the conditions of example 1-1.
 - -P2-7b (p.74)
- Home problems:
 - -P2-5b
 - P2-6a "Hippopotamus stomack"
 http://www.engin.umich.edu/~cre/web_mod/hippo/index.htm